Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[[(benzene-1,3,5-tricarboxylic acid)(1,10-phenanthroline)-cadmium(II)]- μ-oxalato] 1 H -benzotriazole solvate monohydrate]

Chao Qin,* Xin-Long Wang and En-Bo Wang

Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
Correspondence e-mail: qinc703@nenu.edu.cn
Received 21 October 2007
Accepted 29 November 2007
Online 12 January 2008
In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}\right)\right]$-$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cd}^{\text {II }}$ atom has a distorted pentagonalbipyramidal geometry, defined by two N atoms and five O atoms from bidentate 1,10-phenanthroline ligands, oxalate ligands and benzene-1,3,5-tricarboxylic acid ligands. The oxalate ligands in the asymmetric unit possess inversion symmetry. The triazole molecule is not coordinated to the Cd atom. The structure of the title compound features a onedimensional chain running along the crystallographic a axis, and a three-dimensional supramolecular network is formed via aromatic $\pi-\pi$ interactions and hydrogen-bonding interactions.

Comment

Rational design and synthesis of metal-organic polymers is of current interest in the field of supramolecular chemistry and crystal engineering. Benzene-1,3,5-tricarboxylic acid $\left(\mathrm{H}_{3} \mathrm{BTC}\right)$, as a popular organic ligand, has been investigated in the construction of metal-organic frameworks. As a multicarboxylate ligand, $\mathrm{H}_{3} \mathrm{BTC}$ exhibits versatile binding modes in the construction of polymeric complexes. It can act as $\mathrm{H}_{2} \mathrm{BTC}^{-}$(Ying \& Mao, 2004), HBTC^{2-} (Shi et al., 2004) and BTC $^{3-}$ (Almeida Paz \& Kilnowski, 2004) anions and serve as a μ_{2} (Cheng et al., 2004), μ_{3} (Zheng et al., 2004), μ_{4} (Shi et al., 2003), μ_{5} (Wang et al., 2003) and μ_{6} (Serre et al., 2004) linker. So far, some structures of metal-organic polymers containing $\mathrm{H}_{3} \mathrm{BTC}$ and 1,10-phenanthroline have been reported, examples being catena-[bis $\left(\mu_{3}\right.$-benzenecarboxylic acid-3,5-dicarb-oxylato)bis(1,10-phenanthroline)dicadmium(II) (μ_{2}-benzenecarboxylic acid-3,5-dicarboxylato)bis(1,10-phenanthroline)cadmium(II)] (Shi et al., 2004), catena-[($\mu_{3}-1,3,5$-benzene-tricarboxylato)(1,10-phenanthroline)indium] (Gomez-Lor et al., 2005), catena-[($\mu_{2}-1,3$-dicarboxybenzene-5-carboxylato)-diaqua(1,10-phenanthroline)manganese(II) 1,3-dicarboxy-benzene-5-carboxylate monohydrate] (Majumder et al., 2005),
catena-[(μ_{2}-benzene-1,3-dicarboxylato-5-carboxylic acid)-aqua(1,10-phenanthroline)cobalt(II)] (Plater et al., 2001) and bis[diaquabis(1,10-phenathroline)manganese(II)] hexaaquacopper(II) bis(1,3,5-benzenetricarboxylate) docosahydrate clathrate (Qiu et al., 2005). We report here the structure of the title compound, (I), which contains four different organic ligands.

(1)

As shown in Fig. 1, the asymmetric unit contains one Cd atom, one $\mathrm{H}_{3} \mathrm{BTC}$ ligand, one 1,10-phenanthroline ligand, two half oxalate ligands, one uncoordinated benzotriazole molecule and one solvent water molecule. The $\mathrm{Cd}^{\mathrm{II}}$ ion is coordinated by five O atoms of one $\mathrm{H}_{3} \mathrm{BTC}$ ligand and two oxalate ligands, and two N atoms from the 1,10-phenanthroline ligand, showing a distorted pentagonal-bipyramidal geometry. The two half oxalate ligands in the asymmetric unit possess inversion symmetry. The $\mathrm{Cd}-\mathrm{O}$ bond distances range from 2.287 (3) to 2.525 (4) \AA, and the $\mathrm{Cd}-\mathrm{N}$ bond distances are 2.334 (4) and 2.351 (4) A (Fig. 1). Adjacent Cd atoms are linked by oxalate ligands, forming one-dimensional chains running along the crystallographic a axis (Fig. 2). The dihedral

Figure 1
The molecular structure of the title compound, shown with 50% probability displacement ellipsoids. [Symmetry codes: (i) $-x+1,-y$, $-z+1$; (ii) $-x,-y,-z+1$.]
angles between the oxalate and 1,10-phenanthroline ligands are 72.790 (14) and 82.139 (12) ${ }^{\circ}$. The chains of (I) are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the hydroxy groups of $\mathrm{H}_{3} \mathrm{BTC}$ ligands and the carboxylate groups of oxalate ligands $\left(\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 8^{\mathrm{v}}\right.$ and $\mathrm{O} 6-\mathrm{H} 3 \cdots \mathrm{O} 9^{\mathrm{ii}}$; all symmetry codes as in Table 1), resulting in two-dimensional layers (Fig. 3). Although the benzotriazole ligands are not coordinated to the Cd atom, they take part in the construction of the three-dimensional hydrogen-bond network. These sheets are further linked into a three-dimensional supramolecular network via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\left(\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{~N} 3\right.$, $\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1 W^{\text {iv }}, \mathrm{O} 1 W-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {iii }}$ and $\mathrm{O} 1 W-\mathrm{H} 5 \cdots \mathrm{O} 10$; Fig. 3), and details are given in Table 1. Meanwhile, the three-dimensional network is stabilized by strong $\pi-\pi$ stacking interactions between the 1,10 -phenanthroline ligands and H_{3} BTC ligands. As shown in Fig. 3, the face-to-face distance between adjacent 1,10-phenanthroline ligands is 3.324 (3) \AA, and that between the H_{3} BTC ligands and the benzotriazole system is 3.414 (3) \AA. These strong $\pi-\pi$ stacking and hydrogen-bonding interactions play important roles in forming the resulting three-dimensional supramolecular network.

Figure 2
A view of the one-dimensional zigzag chain running along the a axis.

Figure 3
Perspective views of the two- (left) and three-dimensional (right) supramolecular networks along the b axis.

Experimental

The title compound was prepared by hydrothermal methods. A mixture of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.17 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{BTC}(0.13 \mathrm{~g}$, $0.6 \mathrm{mmol}), 1,10$-phenanthroline $(0.1 \mathrm{~g}, 0.6 \mathrm{mmol})$, oxalic acid $(0.027 \mathrm{~g}$, $0.3 \mathrm{mmol})$, benzotriazole $(0.06 \mathrm{~g}, 0.5 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was stirred for 20 min in air. The mixture was then transferred to a 23 ml Teflon reactor and kept at 433 K for 72 h under autogenous pressure. Crystals suitable for X-ray analysis were obtained after the mixture was cooled to room temperature.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot-} & \beta=73.28(3)^{\circ} \\
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3} \cdot \mathrm{H}_{2} \mathrm{O} & \gamma=84.63(3)^{\circ} \\
M_{r}=727.91 & V=1381.3(5) \AA^{3} \\
\text { Triclinic, } P \overline{1} & Z=2 \\
a=9.4531(19) \AA & \text { Mo } K \alpha \text { radiation }^{\circ} \mathrm{A} \\
b=10.869(2) \AA & \mu=0.87 \mathrm{~mm}^{-1} \\
c=14.100(3) \AA & T=298(2) \mathrm{K} \\
\alpha=87.86(3)^{\circ} & 0.26 \times 0.25 \times 0.16 \mathrm{~mm}
\end{array}
$$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.806, T_{\text {max }}=0.874$
13575 measured reflections 6247 independent reflections 4186 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.073$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
1 restraint
$w R\left(F^{2}\right)=0.119$
$S=1.03$
6247 reflections
415 parameters

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.85	1.99	2.824 (5)	165
N5-H5A \cdot O1 $W^{\text {iv }}$	0.86	1.93	2.775 (6)	166
$\mathrm{O} 6-\mathrm{H} 3 \cdots \mathrm{O} 9^{\text {ii }}$	0.85	1.83	2.659 (5)	163
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O}^{\text {v }}$	0.85	1.79	2.636 (5)	172
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{~N} 3$	0.85	1.94	2.711 (6)	150
$\mathrm{O} 1 W-\mathrm{H} 5 \cdots \mathrm{O} 10$	0.85	2.12	2.942 (5)	164

Symmetry codes: (ii) $-x,-y,-z+1$; (iii) $x, y, z+1$; (iv) $x+1, y+1, z-1$; (v) $x, y, z-1$.

All H atoms were initially located in a difference Fourier map. H atoms of hydroxy groups and water molecules were then constrained to an ideal geometry, with $\mathrm{O}-\mathrm{H}$ distances of $0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2001).

This work was supported financially by the Science Foundation for Young Teachers of Northeast Normal University
(grant No. 20070303), the National Natural Science Foundation of China (grant No. 20701006) and the Foundation for Excellent Youth of Jilin, China (grant No. 20070103).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3065). Services for accessing these data are described at the back of the journal.

References

Almeida Paz, F. A. \& Kilnowski, J. (2004). Inorg. Chem. 43, 3882-3893.
Brandenburg, K. (2005). DIAMOND. Version 3.0d. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cheng, D. P., Khan, M. A. \& Houser, R. P. (2004). Cryst. Growth Des. 4, 599604.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gomez-Lor, B., Gutierrez-Puebla, E., Iglesias, M., Monge, M. A., Ruiz-Valero, C. \& Snejko, N. (2005). Chem. Mater. 17, 2568-2573.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Majumder, A., Shit, S., Choudhury, C. R., Batten, S. R., Pilet, G., Luneau, D., Daro, N., Sutter, J. P., Chattopadhyay, N. \& Mitra, S. (2005). Inorg. Chim. Acta, 358, 3855-3864.
Plater, M. J., Foreman, M. R. St J., Howie, R. A., Skakle, J. M. S., Coronado, E., Gomez-Garcia, C. J., Gelbrich, T. \& Hursthouse, M. B. (2001). Inorg. Chim. Acta, 319, 159-175.
Qiu, L. G., Xie, A. J. \& Zhang, L. D. (2005). Adv. Mater. 17, 689-692.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. \& Ferey, G. (2004). J. Mater. Chem. 14, 1540-1543.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, X., Zhu, G. S., Fang, Q. R., Wu, G., Tian, G., Wang, R. H., Zhang, D. L., Xue, M. \& Qiu, S. L. (2004). Eur. J. Inorg. Chem. pp. 185-191.
Shi, Z., Hou, Y., Hua, J., Li, G. \& Feng, S. (2003). Acta Cryst. C59, m337-m338.
Wang, Y. Q., Cao, R., Sun, D. F., Bi, W. H., Li, X. \& Li, X. J. (2003). J. Mol. Struct. 657, 301-309.
Ying, S. M. \& Mao, J. G. (2004). Eur. J. Inorg. Chem. pp. 1270-1276.
Zheng, W. J., Liu, X., Guo, J. H., Wu, L. Y. \& Liao, D. Z. (2004). Inorg. Chim. Acta, 357, 1571-1578.

